59 research outputs found

    Self-organized soft-hard interfaces: From surfaces to biologically integrated hybrid materials

    Get PDF
    The biological material systems promise the possibility of developing innovative materials that simultaneously self-assembled, self-organized and self-regulated; characteristics that are difficult to achieve in purely synthetic systems. Proteins play an essential role in fabrication of biological materials due to their diverse functions ranging from structural to biochemical. The ability to mimic any of these functions can be a game changer in designing new biomaterials. There are several challenges in these strategies including replicating the hierarchical organization of biological materials, organization that provides multi-scale structure/property interdependence. The interfacial interactions become critical in tuning the individual components towards the functional needs. There is a need for strategies that can control self-organization at a molecular level and thus provide predictability over the biological and inorganic interfaces. In the recent years, there has been a proliferating interest in creating advanced bio-interfaces resolving protein modulated material surfaces that allow as well as enhance favorable interactions with the surrounding biological systems. Smaller protein domains, i.e. peptides, have been utilized as the key fundamental building blocks to mimic the molecular recognition as the basis of molecular scale interactions. Our approach includes decoding the peptide-material interactions, and using these foundations to develop self-organized and multifunctional hybrid systems. Following Nature’s molecular footsteps, we explore tuning molecular interactions at bio-interfaces to create integrated bio-hybrid systems. In this presentation, we summarize our approach, which includes decoding the peptide-material interactions, and using these foundations to have better control specifically at the soft-hard interfaces. We will first describe our chimeric peptide-based approach for titanium and titanium alloys used for skeletal implants. These self-assembling binding motifs in combination with other small bioactive peptide molecules enable us to introduce additional functions encoded within the combined molecule. The resulting chimeric molecule maintains both functions, controlling their surface organization at the implantable material interface while also retaining the desired orientation to present a bioactive signal to the cells to direct their behavior. Our examples will include: i) to utilize antimicrobial peptides in controlling bacteria-surface interactions at the interfaces to prevent biofilm formation and consequent implications such as implant failure due to bacterial infections [1], ii) to direct cell-to-implant interactions by chimeric peptides that are displayed at the material interfaces to achieve guided stem cell differentiation [2]. We will finally describe our fusion protein based approach where engineered peptide tags and nanoparticle based systems are used to generate self-organized biologically integrated hybrid materials. Here we demonstrate modularity of our approach in designing polymer nanofibers integrated with nanoparticles assembled with engineered peptides that are genetically conjugated to photoactive biomarker proteins [3].The selected bio-hybrid composites will be presented in three different categories, their ability for bio-sensing, antimicrobial property and producing integrated mineralized interfaces. The integration of biological building blocks may allow harnessing the extraordinary diversity and protein functions to generate smart bio-hybrid materials for wide range of applications including sensing and tissue engineering applications

    Self-Assembled Recombinant Proteins on Metallic Nanoparticles as Bimodal Imaging Probes

    Get PDF
    Combining multiple modalities is central to developing the new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owing to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self-assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous for assembling selective functional nano-entities or proteins onto nanoparticle surfaces. Herein we explored the formation of self-assembled hybrid metallic nano-architectures composed of gold and silver nanoparticles with fluorescent proteins for use as bimodal imaging probes. We employed metal-binding peptide-based assembly to self-assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biologic tissues and provide a high signal-to-noise ratio and sensitivity

    Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443

    Get PDF
    In this study, a novel laccase gene, named as Cplcc1, and its corresponding cDNA were isolated and characterized from the Coriolopsis polyzona MUCL 38443 strain. The Cplcc1 gene consists of a 1563-bp open reading frame encoding a protein of 520 amino acids with a 20-residue putative signal peptide. The size of the Cplcc1 gene is 2106 bp and it contains ten introns and five potential N-glycosylation sites. Additionally, the isolated full-length Cplcc1 cDNA was successfully expressed in Pichia pastoris. The heterologous expression conditions were also optimized and the highest activity value increased to 800 U L–1 with 1.5% methanol, 0.8 mM CuSO4, and 0.6% L-alanine supplementation. The recombinant laccase was partially purified and the molecular weight was found as approximately 54 kDa. The maximum oxidation activity was observed for 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at pH 3.0. The optimal temperature was found as 70 °C. On the other hand, at 30 °C, the enzyme was stable for more than a week and its half-life was longer than 8 h. The Km, Vmax, kcat, and kcat Km –1 values of the recombinant laccase were identified as 0.137 mM, 288.6 µmol min–1 L–1, 5.73 × 105 min–1, and 4.18 × 106 min–1 mM–1,respectively. Sodium azide, L-cysteine, and SDS were found as usual inhibitors

    Autonomous-Strengthening Adhesive Provides Hydrolysis-Resistance and Enhanced Mechanical Properties in Wet Conditions

    Get PDF
    The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties

    Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides

    Get PDF
    Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences

    Fabrication of hybrid crosslinked network with buffering capabilities and autonomous strengthening characteristics for dental adhesives

    Get PDF
    Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives

    Evolution of Network Structure and Mechanical Properties in Autonomous-Strengthening Dental Adhesive

    Get PDF
    The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample’s history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young’s modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives

    Cost effective filamentous phage based immunization nanoparticles displaying a full-length hepatitis B virus surface antigen

    Get PDF
    Hepatitis B virus (HBV) is one of the major causes of chronic hepatitis, cirrhosis and liver cancer. In combating HBV infections, HBV diagnosis and vaccination are therefore critical. The hepatitis B virus surface antigen (HBsAg) is a key target molecule in developing vaccines and diagnostic systems. To date, although HBsAg has been expressed in bacteria, yeasts and mammalian cells, there are still limitations in the existing ones, which leave the necessity for searching new HBsAg production methods. In this study, a simple phage display-based method was developed to produce the purified full-length HBsAg molecules for further immunization studies. For this purpose, the HBsAg coding gene was cloned into a pCANTAB5E phagemid vector and expressed on the surface of M13 filamentous phages. The HBsAg-expressing phage nanosystem was then used as immunization agent in BALB/cJ mice. The ELISA results for sera obtained from mice immunized with HBsAg-displaying phage particles revealed an immune response against HBsAg. These results demonstrate the potential use of a full-length antigen to be displayed on phages as cost effective adjuvant-free immunization agents as an alternative to the highly purified and more expensive antigens conjugated with carrier molecules

    Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Biomaterials Science and Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsbiomaterials.9b01213.The integration of molecular and cell biology with materials science has led to strategies to improve the interface between dental implants with the surrounding soft and hard tissues in order to replace missing teeth and restore mastication. More than 3 million implants have been placed in the US alone and this number is rising by 500,000/year. Peri-implantitis, an inflammatory response to oral pathogens growing on the implant surface threatens to reduce service life leading to eventual implant failure, and such an outcome will have adverse impact on public health and create significant health care costs. Here we report a predictive approach to peptide design, which enabled us to engineer a bifunctional peptide to combat bacterial colonization and biofilm formation, reducing the adverse host inflammatory immune response that destroys the tissue surrounding implants and shortens their lifespans. This bifunctional peptide contains a titanium-binding domain that recognizes and binds with high affinity to titanium implant surfaces, fused through a rigid spacer domain with an antimicrobial domain. By varying the antimicrobial peptide domain, we were able to predict the properties of the resulting bifunctional peptides in their entirety by analyzing the sequence-structure-function relationship. These bifunctional peptides achieve: 1) nearly 100% surface coverage within minutes, a timeframe suitable for their clinical application to existing implants; 2) nearly 100% binding to a titanium surface even in the presence of contaminating serum protein; 3) durability to brushing with a commercially available electric toothbrush; and 4) retention of antimicrobial activity on the implant surface following bacterial challenge. A bifunctional peptide film can be applied to both new implants and/or repeatedly applied to previously placed implants to control bacterial colonization mitigating peri-implant disease that threatens dental implant longevity

    Repeatedly Applied Peptide Film Kills Bacteria on Dental Implants

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in JOM Journal of the Minerals, Metals and Materials Society. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11837-019-03334-w.The rising use of titanium dental implants has increased the prevalence of peri-implant disease that shortens their useful life. A growing view of peri-implant disease suggests that plaque accumulation and microbiome dysbiogenesis trigger a host immune inflammatory response that destroys soft and hard tissues supporting the implant. The incidence of peri-implant disease is difficult to estimate, but with over 3 million implants placed in the USA alone, and the market growing by 500,000 implants/year, such extensive use demands additional interceptive approaches. We report a water-based, nonsurgical approach to address peri-implant disease using a bifunctional peptide film, which can be applied during initial implant placement and later reapplied to existing implants to reduce bacterial growth. Bifunctional peptides are based upon a titanium binding peptide (TiBP) optimally linked by a spacer peptide to an antimicrobial peptide (AMP). We show herein that dental implant surfaces covered with a bifunctional peptide film kill bacteria. Further, using a simple protocol for cleaning implant surfaces fouled by bacteria, the surface can be effectively recoated with TiBP-AMP to regain an antimicrobial state. Fouling, cleansing, and rebinding was confirmed for up to four cycles with minimal loss of binding efficacy. After fouling, rebinding with a water-based peptide film extends control over the oral microbiome composition, providing a novel nonsurgical treatment for dental implants
    • …
    corecore